Deploy Model
Step to deploy the model
Clone the repository
Set an endpoint name
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
Create deployment configuration yml file
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
name: blue
endpoint_name: my-endpoint
model:
path: ../../model-1/model/
code_configuration:
code: ../../model-1/onlinescoring/
scoring_script: score.py
environment:
conda_file: ../../model-1/environment/conda.yml
image: mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1
instance_type: Standard_DS2_v2
instance_count: 1
Register the model
Extract the YAML definitions of
model
andenvironment
into separate YAML files and use the commandsaz ml model create
andaz ml environment create
. To learn more about these commands, runaz ml model create -h
andaz ml environment create -h
.
Deploy the model with online endpoint to Azure
To create the endpoint in the cloud, run the following code
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
To create the example deployment named
blue
under the endpoint, run the following code:
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
View the endpoint by navigating to Endpoints in Azure Machine Learning studio
Invoke the endpoint to score data with the model
invoke command
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
use curl to request REST API to score data
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
Reference about deployment :
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-deploy-with-rest
Last updated